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a b s t r a c t

Dense registration of different impressions of the same finger is beneficial to various fingerprint
matching methods. This is a challenging problem due to elastic distortion of finger skin and sparsity of
distinctive features (namely minutiae) in fingerprints. Most existing fingerprint registration algorithms
produce only correspondences between minutiae, which are not sufficient for dense registration of
fingerprints. In this paper, we proposed a novel dense fingerprint registration algorithm, which consists
of a composite initial registration step and a dual-resolution block-based registration step. The dual-
resolution block-based registration is approached in an energy minimization framework which consists
of local search, energy function construction and global optimization. In local search step, a candidate set
of transformations of every input image block are found using image correlation w.r.t. the corresponding
reference image block. In energy function construction, two factors are considered: (1) the similarity
between the transformed input block and the corresponding reference block, and (2) the compatibility
between transformations of neighboring input blocks. In global optimization, a region growing style
algorithm is proposed to minimize the energy function. Experimental results on three databases con-
taining many distorted fingerprints, namely FVC2004 DB1, Tsinghua Distorted Fingerprint database and
NIST SD27 latent fingerprint database, show that the proposed algorithm not only produces more ac-
curate registration results but also improves the matching performance by fusion of minutiae matching
and image correlation.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Although automatic fingerprint recognition technology has
been widely used in various applications, there is still large room
for improvement of matching accuracy, especially in the case of
low quality fingerprints [1]. Degradation of fingerprint quality can
be photometric or geometrical. Photometric degradation can be
caused by non-ideal skin conditions and background noise. Geo-
metrical degradation is mainly caused by skin distortion. Photo-
metric degradation has been widely studied and a number of en-
hancement algorithms [2–6] have been proposed. On the contrary,
geometrical degradation due to skin distortion has not yet re-
ceived sufficient attention, despite of the importance of this
problem.

Elastic distortion is introduced due to the inherent flexibility of
fingertips, contact-based fingerprint acquisition procedure, and a
purposely lateral force or torque, etc [7,8]. Skin distortion in-
creases the intra-class variations, namely the difference among
. Si),
du.cn (B. Yuan),
fingerprints from the same finger. Although distortion affects all
fingerprint matching methods, image-based matchers are much
more sensitive to distortion than minutiae-based matchers. This is
one of the reasons for the popularity of minutiae-based matchers.
However, the performance of minutiae matchers may drastically
drop when the distortion is severe, the number of genuine min-
utiae is small, or many spurious minutiae are present.

In order to overcome the limitation of minutiae-based match-
ing, researchers have proposed to use some extended features,
such as ridge orientation field [9], ridge period map [10,11], and
ridge skeleton [12,13] etc. Although these methods improve the
discriminating ability of minutiae matchers, they also suffer from
distortion.

In order to remove the negative impact of distortion, it is ne-
cessary to estimate a dense deformation field between two fin-
gerprints. “Dense” means that it can align not only minutiae but
also ridges. This is a deformable image registration problem, which
is a popular topic in medical image analysis [14], but is first pro-
posed in the fingerprint recognition community. The proposed
dense registration algorithm combines the advantages of minu-
tiae-based matching and image-based matching, and overcomes
their disadvantages. It can densely register two fingerprints. It is
based on a composite initial registration step and a dual-resolution
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block-based registration step. In initial registration step, the min-
utiae-based matching can decrease the distortion in global level
using the TPS model, which overcomes the disadvantage of image-
based matching which cannot handle distortion in global level. In
dual-resolution block-based registration step, the idea is to find
dense point correspondences between two initial registered fin-
gerprints using local image-based matching. Since the points are
regularly sampled grid points, it is not restricted by the sparsity of
minutiae. Combining the advantage of minutiae-based matching
which can decrease the distortion in global level and the ad-
vantage of local image-based matching which can well handel the
distortion in local level, the proposed dense registration algorithm
can register distorted fingerprints accurately. Registration results
for a pair of distorted fingerprints are given in Fig. 1 to compare
three different methods, namely, the minutiae-based rigid trans-
formation, the minutiae-based TPS model, and the proposed dense
registration method.

The flowchart of the proposed registration algorithm is shown
in Fig. 2. Initialized by a minutiae-based registration algorithm, a
dual-resolution block matching algorithm is proposed to find
dense correspondences between an input fingerprint and a re-
ference fingerprint. Block matching is approached in an energy
minimization framework which consists of local search, energy
function construction and global optimization. In local search step,
a candidate set of transformations of every input image block,
Fig. 1. Registration results for a pair of distorted fingerprints from FVC2004 DB1. (a) Re
based rigid transformation model, (d) fingerprints aligned by the minutiae-based TPS m
matched minutiae pairs are shown on the reference and input fingerprints. Ridge ske
fingerprint to visualize the registration result. The well registered skeletons are illustrate
input fingerprint, the minutiae-based rigid registration fails to align the ridges everyw
matched minutiae, but fails in the other area. Also, due to three pairs of wrong matched m
fails to align the ridges in the bottom area. The proposed dense registration algorithm ob
to wrongly matched minutiae. (For interpretation of the references to color in this figu

Fig. 2. Flowchart of the proposed registration algorithm. Given a pair of fingerprints, two
performed to align the two fingerprints densely.
which lead to good alignment between the input image block and
the reference fingerprint, are found. In energy function construc-
tion, due to the continuity of deformation field, two factors are
considered: (1) the similarity between the transformed input
block and the corresponding reference block, and (2) the com-
patibility between transformations of neighboring input blocks. In
global optimization, a region growing style algorithm is proposed
to minimize the energy function. Benefitting from the way to
construct energy function and its optimization algorithm, the
dual-resolution block-based registration is insensitive to in-
accurate initialization and robust to noise.

The proposed algorithm has been evaluated on three databases
which contain many distorted fingerprints, namely FVC2004 DB1
[15], Tsinghua Distorted Fingerprint (TDF) database and NIST SD27
latent fingerprint database [16]. Not only the registration accuracy
but also matching accuracy are evaluated on these three databases.
In order to measure registration accuracy, we have manually re-
gistered 120 pairs of distorted fingerprints in TDF as ground truth
using a specially designed registration software tool. To quantita-
tively evaluate the contribution of the proposed dense registration
algorithm to matching performance, we conduct matching ex-
periments on fingerprints without/with dense registration. All
experimental results demonstrate that the proposed algorithm not
only produces more accurate registration results but also improves
the matching performance significantly by fusion of minutiae
ference fingerprint, (b) input fingerprint, (c) fingerprints aligned by the minutiae-
odel, and (e) fingerprints aligned by the proposed dense registration algorithm. The
letons of the registered input fingerprint are overlaid on the binarized reference
d as green lines, while the others are illustrated as red lines. Due to distortion of the
here, the minutiae-based TPS registration is good in the area with many correctly
inutiae (contained in the brown boxes), the minutiae-based TPS registration totally
tains good registration result for areas without matched minutiae and is insensitive
re legend, the reader is referred to the web version of this article.)

registration steps (namely, initial registration and dual-resolution registration) are
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matching and image correlation.
The rest of the paper is organized as follows. In Section 2, we

review the related work. In Sections 3 and 4, we present the
proposed registration algorithm in details. In Section 5, we give
the experiment results. In Section 6, we summarize the paper and
discuss the future research directions.
2. Related work

For a fingerprint registration algorithm, a transformation model
is used to register input fingerprint to reference fingerprint. The
most common transformation model is the rigid transformation
model which contains translation and/or rotation [9,17]. However,
it is obvious that the rigid transformation model cannot handle
distorted fingerprints. Thus, some researchers proposed to use
more powerful transformation models, such as thin-plate spline
(TPS) model [18,19], to register two fingerprints. However, the
success of TPS-based registration relies on a large number of cor-
rectly matched points. Matched minutiae outputted by minutiae
matching algorithms [17,11,20,21] are usually unreliable when
fingerprints contain severe distortion. Even if the matched minu-
tiae are all correct, the TPS model derived from the matched
minutiae cannot densely register distorted fingerprints due to the
sparsity of minutiae. Although ridge matching algorithms [12,13]
may produce more matching points, the ridge correspondences
are incorrect when there exist wrongly matched minutiae or there
are topological changes in ridge skeletons due to noise.

Different from the existing methods, our method can find
dense point correspondence between two fingerprints. It consists
of an initial registration step and a dual-resolution block-based
registration step. By using initial registration, we can greatly re-
duce the search space and then markedly save the computation
time. By using dual resolution block based registration, we can
further obtain the better registration accuracy. The details about
these two steps will be described in the next two sections.
3. Initial registration

In the initial registration step, a minutiae matching algorithm is
used to find matched minutiae between the input and reference
fingerprints. If the number of matched minutiae exceeds a
threshold tn, a TPS model [22] fitted to the matched minutiae is
used to initially register the input fingerprint to the reference
fingerprint. Otherwise, more robust features (orientation map and
Fig. 3. An example for initial registration using orientation map and period map. (a) Refe
the minutiae-based method, and (d) initially registered input fingerprint using the orie
fingerprints due to the incorrectly matched minutiae (marked in (a) and (b)) which are c
orientation & period-based method is successful.
period map) are used to estimate the rigid transformation be-
tween two fingerprints. The later method is mainly useful for a
few cases where the common area of two fingerprints is very
small.

3.1. Minutiae-based initial registration

VeriFinger 6.2 SDK [23] is used to extract minutiae from fin-
gerprints. The spectral clustering method in [24], a powerful
method to find consistent correspondences between two sets of
features, is modified to find matching minutiae between two fin-
gerprints. We chose this method because our experiments showed
that it performs better in finding corresponding minutiae than
several well known minutiae matching algorithms, such as Ver-
iFinger SDK, relaxation based method in [20], greedy method in
[17]. There are two major differences: (1) we eliminate minutiae
pairs whose minutiae cylinder-code (MCC) descriptors [20] are too
different, (2) the mapping constraints include the difference be-
tween the length of the line connecting two minutiae, the differ-
ence between the relative angle of two minutiae, and the differ-
ence between the relative angle of the line connecting two min-
utiae and one of the two minutiae. In order to set reasonable
thresholds of these mapping constraints, we do some statistics on
genuine matches of FVC2004 DB1_B and use the statistical results
to set the thresholds.

3.2. Orientation & period-based initial registration

To register the ridge orientation and period maps of two fin-
gerprints, which are estimated using the method in [2] (there are
some other methods for estimating ridge orientation and period
such as the methods in [25,26]), we do a full search of the space of
rigid transformation parameters by maximizing the following
objective function:
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where x and y denote the translation parameters, ψ denotes the
rotation parameter, OI is the orientation map of the input finger-
print, OR is the orientation map of the reference fingerprint, PI is
the period map of the input fingerprint, PR is the period map of the
reference fingerprint, function ()OrientDiff computes the difference
of two orientation maps at each location, function ()PeriodDiff
rence fingerprint, (b) input fingerprint, (c) initially registered input fingerprint using
ntation & period-based method. The minutiae-based method fails to align the two
aused by noise and the small common area between two fingerprints. However, the
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computes the difference of two period maps at each location, ∥·∥0
counts the number of nonzero elements, θt and pt are predefined
orientation and period thresholds. Note that the ridge orientation
map and period map are sampled on blocks of 8�8 pixels. Here,
the block size is first selected based on experience and then tuned
according to the experimental results of a few examples. Finally,
we register the input fingerprint to the reference fingerprint using
the obtained rigid transformation parameters.

The level 1 features (orientation map and period map) based
registration method is more robust to noise than the minutiae-
based registration method as shown in Fig. 3, where the minutiae-
based registration is incorrect since the two matching minutiae
pairs are wrong, but the orientation & period-based method is able
to successfully register the two fingerprints. Successful fingerprint
registration based on orientation field are also reported in a recent
work [27].
4. Dual-resolution block-based registration

The proposed dual-resolution block-based registration consists
of a TPS warping after a low resolution block matching step and a
TPS warping after a high resolution block matching step. It is used
to further register the input fingerprint to reference fingerprint
accurately. The flowchart of dual-resolution block-based registra-
tion is shown in Fig. 4.

We define sampling grid on initially registered input finger-
print, and then find the optimal transformation of every sampling
block using image correlation w.r.t. the corresponding reference
block image. However, due to limited information of a single block,
locally optimal transformation may not be the true transformation.
Hence multiple candidate transformations are found to increase
the probability of including the true one. In order to determine the
globally optimal transformation for each input block, contextual
information, namely compatibility between the transformations of
neighboring input blocks, needs to be utilized. Thus we construct
an energy function considering both the similarity between the
transformed input block and the corresponding reference block
and compatibility between transformations of neighboring input
blocks. Finally, a global optimization step is performed to mini-
mize the energy function, namely determining the globally opti-
mal transformation for each input block. In the following subsec-
tions, we describe the three steps of the block matching algorithm:
(1) local search, (2) energy function construction, and (3) global
optimization.
Fig. 4. Flowchart of dual-resolution block-based registration. Given the initially registe
tration are performed to align the two fingerprints accurately. In low resolution and h
blocks (a larger sampling interval for low resolution registration and a smaller one for hi
to the center points of matched blocks is used to align the two fingerprints. The blue d
displacements. Note that, the lengths of blue arrows are trebled for visualization purpo
referred to the web version of this article.)
4.1. Local search

The input fingerprint is divided into a set of blocks Γ{ }i which
are overlapped only in boundary lines. The block size is 41�41/
21�21 pixels in low/high resolution block matching (Note that
the block sizes are first selected based on experience and then
tuned according to the experimental results of a few examples).
Then multiple candidate transformations of every input block are
found using image correlation w.r.t. the corresponding region in
the reference fingerprint. The flowchart of local search is shown in
Fig. 5.

For the ith input block Γi, we find multiple candidate trans-
formation parameters, namely ϒ ϒ ϒ ϒ= { … }, , ,i i i i n,1 ,2 , c

, under which
the similarities with the corresponding areas in the reference
fingerprint are high. Here, nc denotes the length of candidate list,

αϒ = ( )( ≤ ≤ )t t s j n, , , 1i j x y i j i j, , , ci j i j, ,
, where txi j,

and tyi j,
denote the

translation parameters in x and y directions, αi j, denotes the ro-
tation parameter, si j, denotes the scale parameter. Note that, only
when both the foreground area ratio of Γi and the foreground area
ratio of its search area Ai (81�81/41�41 pixels in low/high re-
solution block matching and the center point is the same to the
one of Γi) exceed threshold ta, Γi is viewed as a valid block. We
estimate transformation parameters only for valid blocks.

In order to find multiple candidate transformation parameters,
a suitable search technique must be developed. We adopt image
correlation as the similarity measure. The most straightforward
search technique is to exhaustively try all possible parameters, i.e.,
do a full search. However, it is very time consuming. In order to
improve efficiency, local ridge orientation and period are first used
to markedly reduce the search scope of rotation and scale para-
meters, and then Fast Fourier Transform (FFT) is used to find two
translation parameters.

For block Γi, we sample the orientation and period maps using
5�5 regular grids and obtain the orientation vector OIi

and period
vector PIi

on input block, and the orientation vector ORi
and period

vector PRi
on reference block Φi whose size and position are the

same to Γi. Further, we get the orientation difference vector
Θ = −O Oi R Ii i

and the period ratio vector Δ = P P./i R Ii i
.

In order to set the search scope of rotation, we need to calculate
the mean and coherence of Θi. The method described in [25,26] is
used to calculate the mean of Θi:

∑ ∑θ Θ Θ¯ = ( ) ( )
( )

⎛
⎝⎜

⎞
⎠⎟

1
2

atan2 sin 2 , cos 2 ,
2i i i

where θ̄i denotes the mean of Θi. And orientation coherence
method described in [25,26] is used to calculate the coherence of
Θi:
red fingerprints, low resolution registration and high resolution block-based regis-
igh resolution block-based registration, corresponding blocks of a set of sampling
gh resolution registration) in the input fingerprint are found and a TPS model fitted
ots illustrate the center points of valid blocks and the blue arrows illustrate their
se. (For interpretation of the references to color in this figure legend, the reader is



Fig. 5. Flowchart of local search. The input block is first transformed using rotation ( π
60

in clockwise) and scaling (0.983) parameters estimated from local ridge orientation
and period information (in this example, we use only one rotation parameter). Then image correlation is computed to find multiple candidate translation parameters. The
scaled and rotated input blocks transformed with six candidate translation parameters are overlaid on search area and shown as red skeleton images for visualization
purpose. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where si denotes the coherence, |·| calculates the norm of a vector,
function ()length calculates the length of a vector. Finally, the
search scope of rotation is set as θ σ θ σ[ ¯ − ( − ) ¯ + ( − ) ]π π1 , 1i i i i6 6

. The
scale factor is defined as:

Δ= ( ) ( )s mean . 4i i

We transform block Γi using si and sampled rotation parameters
from θ σ θ σ[ ¯ − ( − ) ¯ + ( − ) ]π π1 , 1i i i i6 6

, where the sampling interval is
π

90
. Then we rotate them by 180°, pad with zeros to create

( + ) × ( + ) ( + ) × ( + )41 81 41 81 / 21 41 21 41 matrixes in low/high
resolution block matching, do the FFT, and record the results as

= { … }ξF F F F, , ,i i i i,1 ,2 , i
, where ξi denotes the sampling number of

rotation parameters. At the same time, we pad the search area Ai
with zeros to create ( + ) × ( + )81 41 81 41 / ( + ) × ( + )41 21 41 21
matrixes in low/high resolution block matching, do the FFT, and
record the result as Mi. Next, we do the inverse FFT to

ξ* ( ≤ ≤ )F M k. 1i k i i, and obtain ξi correlation results. The first nc

local maximums in all ξi correlation results are found and denoted
as τ τ τ τ= { … }, , ,i i i i n,1 ,2 , c

whose locations are used to calculate
translation, rotation and scale parameters. Thus, we get nc candi-
date transformations ϒ ϒ ϒ ϒ= { … }, , ,i i i i n,1 ,2 , c

, where
αϒ = ( )( ≤ ≤ )t t s j n, , , 1i j x y i j i j, , , ci j i j, ,

.

4.2. Energy function construction

After local search, we obtain a list of nc candidate transfor-
mations, ϒ ϒ ϒ ϒ= { … }, , ,i i i i n,1 ,2 , c

, for block Γi. We need to choose the
optimal transformation for block Γi.

We address this problem by searching for a set of candidates,
*r , which minimizes an energy function ( )E r . Let ri denotes the
index of the selected candidate for block Γi, and = { … }r r rr , , , n1 2 p

be the vector of the indices of the selected candidates for all np
valid blocks. The solution space for r is all possible combinations of
candidate indices, which is very large. The choice of a proper en-
ergy function is crucial for the success of this method. We consider
two factors in designing the energy function: (1) the similarity
between the transformed input block and the corresponding re-
ference block, and (2) the compatibility between transformations
of neighboring input blocks.

The energy function is defined as

( ) = ( ) + ( ) ( )E E w Er r r , 5s c c

where ( )E rs denotes the similarity term, ( )E rc denotes the com-
patibility term, and wc is the weight of compatibility term. The
similarity term is defined as

∑ τ μ( ) = ( − )
( )=

E r exp / ,
6i

n

i rs
1

, 1

p

i

where μ1 is a harmonic factor. The compatibility term is defined as

∑ ϒ ϒ( ) = − ( )
( )( )∈

⎛
⎝
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⎞
⎠
⎟⎟


E Cr 1 , ,

7i j
i r j rc

,
, ,i j

where  denotes the set of adjacent blocks which are 4-connected
neighbors. The compatibility is defined as

μ μϒ ϒ( ) = ( − ) + ( − ) ( )C w d w d,
1
2

exp /
1
2

exp / , 8i r j r, , 1 1
2

2 2 2
2

2i j

where d1 and d2 denote the distances of two corresponding ver-
texes between two neighboring input blocks transformed with ϒi r, i

and ϒj r, j
, μ2 is a harmonic factor, w1 and w2 are penalty factors

calculated using ϕ= + | ( )|w a b sin1 1 , ϕ= + | ( )|w a b sin2 2 . ϕ1 and ϕ2

denote the difference between the angles of the two lines con-
necting two corresponding vertexes and ridge orientation of re-
ference fingerprint at the middle point of two corresponding
vertexes, a and b denote two linear parameters. w1 and w2 mean
that there is a large penalty when the displacement is large along
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the direction normal to ridge orientation. The definition for com-
patibility is illustrated in Fig. 6. Two compatibility examples are
given in Fig. 7.
4.3. Global optimization

The Energy function in Eq. (5) describes a Markov random field
(MRF) problem. To minimize it, a region growing MRF optimiza-
tion algorithm is developed. First, the beginning region (seed re-
gion) is selected. For a block in input fingerprint and the corre-
sponding block in reference fingerprint, their image correlation
coefficient is calculated using the following formula:
Fig. 6. Compatibility between two transformed neigh

Fig. 7. (a) A pair of transformed neighboring blocks with low compatibility value (0.10
(0.934).

Fig. 8. The process of region growing MRF optimization (at low resolution). The first im
registered fingerprints. The blue numbers from 1 to 7 show the region growing order of b
illustrate the center points of fixed and undetermined blocks and their displacements a
after current iteration, while the blue arrows indicate the blocks which are fixed after cu
(For interpretation of the references to color in this figure legend, the reader is referred
( )( )
κ

Γ Γ Φ Φ

Γ Γ Φ Φ
=

∑ ( − ¯ )( − ¯ )

∑ ( − ¯ ) ∑ ( − ¯ ) ( )

,

9

i
j i i i i

j i i j i i
2 2

j j

j j

where κi denotes the image correlation coefficient between Γi and
its reference block Φi whose size and position are the same to Γi, Γij

and Φij
denotes the jth pixel value in foreground area of Γi and Φi,

Γ̄i and Φ̄i denotes the mean pixel value of foreground area of Γi and
Φi. We find all valid blocks in input fingerprint if the corre-
sponding image correlation coefficient exceeds the predetermined
threshold tr. The largest 4-connected region of these blocks is set
as the beginning region. The blocks in beginning region are
deemed as fixed blocks, namely their transformations have been
boring blocks. The compatibility value is 0.222.

3) and (b) a pair of transformed neighboring blocks with high compatibility value

age shows the initially registered fingerprints and the last one shows the coarsely
locks. The set of number 0 denotes the beginning region. The points and the arrows
fter current iteration. The magenta arrows indicate the blocks which are not fixed
rrent iteration. Note that the lengths of arrows are trebled for visualization purpose.
to the web version of this article.)



Fig. 9. Two examples showing the registration results of global MRF optimization algorithm and region growing MRF optimization algorithm. We can see that region
growing algorithm obtains better results, with more well aligned ridge skeletons.

Table 1
Parameters used in our experiments.

Parameter (s) Description Values (in initial or low/high resolution registration)

tn threshold of the number of initially matched minutiae pairs 6
θt predefined orientation threshold in orientation & period-based initial registration π

18
pt predefined period threshold in orientation & period-based initial registration 1 pixel

ta foreground area ratio threshold 0.5/0.5
nc length of candidate list 6/6
wc weight of compatibility term 1/1
μ1 harmonic factor in similarity term × ×1 10 /0.5 107 7

μ2 harmonic factor in compatibility term 200/100
a, b linear parameters in penalty factor 0.5/0.5, 1/1
tr predefined correlation coefficient threshold in global optimization 0.4/0.5
ts similarity threshold in global optimization 0.74/0.83
tc compatibility threshold in global optimization 0.35/0.3
λc,1 compatibility weight between the fixed block and undetermined block 3/3

λc,2 compatibility weight between two undetermined blocks 1/1

Table 2
Fingerprint databases for evaluating the proposed algorithm.a

Database Description Fingerprint size (width�high pixels) Challenges

FVC2004 DB1_A 800 fingerprints 640�480 pixels large distortion, small area, dry or wet finger
TDF 320 pairs of distorted & normal fingerprints 800�750 pixels large distortion
NIST SD27 258 pairs of latent & rolled fingerprints 800�768 pixels low image quality, large distortion

a All fingerprints have a resolution of 500 ppi.

X. Si et al. / Pattern Recognition 63 (2017) 87–101 93
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determined. In every iteration, a valid block can be with three
types: fixed, undetermined and unprocessed. Fixed block means
its transformation has been fixed in the last iteration, un-
determined block means its transformation has not yet been fixed
in the last iteration or it is a newly added block in current iteration,
and unprocessed block means it has not yet been included in the
current region.

Algorithm 1. Region growing MRF optimization algorithm.
Input: Valid input blocks Γ{ }i , their corresponding blocks Φ{ }i in reference fingerprint and their candidate transformations ϒ{ }i ;
Output: Optimal transformation: ϒ ϒ* = { * }*i ri, ;

for ith valid block do
κ

κ
( )

>
| =

=
C
C

tif then

Use Eq. 9 to calculate ;

1;
0;

i

i

i

i

r

end
= ( )D CFindLargestConnectedRegion ;

Set D as the beginning region;
while there is any unprocessed block or the number of fixed blocks is still changed do

ϒ ϒ

−
( )

* = { ** }

|

i ri
each undetermined block

both the similarity term and the weighted average of the compatibility term are less than t
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Construct energy function Eq. 5 ;

Optimize energy function using LBP and output optimal transformations , in current region;

s

c
Set it as fixed block;

end
ϒ ϒ* = { * }*i ri, ;
In every iteration, we add the valid 4-connected neighbors
which are unprocessed to the current region and construct the
energy function using Eq. (5). The loopy belief propagation (LBP)
algorithm [28] is used to optimize the energy function. LBP was
originally proposed to perform exact inference on trees. However,
empirical studies have shown that it also yields good approximate
results on MRF [28,29].

After LBP optimization of every iteration, we check if the so-
lution of undetermined blocks in the current region is good en-
ough. An undetermined block is set as a fixed block if both its si-
milarity term and the weighted average of the compatibility term
are less than predetermined thresholds ts and tc. λc,1 denotes the
compatibility weight between the fixed block and undetermined
block, and λc,2 between two undetermined blocks. The iterative
algorithm continues until there is no unprocessed blocks and the
number of fixed blocks does not change. The region growing
process of an example is shown in Fig. 8. Note that, if the begin-
ning region is null, LBP is directly applied to all valid input blocks.

This algorithm is summarized in Algorithm 1. It returns the
globally optimal transformations of valid input blocks, namely,
ϒ ϒ* = { * }( ≤ * ≤ )* r n1i r i, ci

, where *ri denotes the index of final se-

lected candidate transformation for block Γi. Let  denote the
vector of center points of Γ,  denote the vector of center points of
transformed blocks of Γ using ϒ*, respectively. Finally, a TPS model
fitted from  to  is used to register the two fingerprints. De-
formation field  between two fingerprints can be obtained using
the following formula:

= − ( )  . 10

Fig. 9 give two examples to compare global MRF optimization
algorithmwith region growing MRF optimization algorithm. In the
global MRF optimization algorithm, we directly use all valid blocks
to construct energy function and use LBP to optimize it. From
Fig. 9, we can see the region growing algorithm obtains better
results.

The processes of low resolution and high resolution block
matching are the same except for some parameters. Table 1
summarizes the parameters used in our experiments. Note that,
these parameters are first selected based on experience and then
tuned according to the experimental results of a few examples.
5. Experiment

The proposed algorithm has been evaluated in terms of regis-
tration accuracy (Section 5.1) as well as matching accuracy (Sec-
tion 5.2) using three databases (see Table 2). The computational
cost is discussed in Section 5.3.

5.1. Registration accuracy

We compare the registration results of three registration ap-
proaches, namely, the minutiae-based rigid registration, the initial
registration step of the proposed dense registration, and the pro-
posed dense registration. The rigid transformation model fitted to
the matched minutiae obtained using the method introduced in
3.1 is used to finish the minutiae-based rigid registration. And the
method introduced in Section 3 is used to finish the initial regis-
tration. Fig. 10 gives the results of three examples (the first two
from FVC2004 DB1_A and the last one from TDF). From Fig. 10, we
can clearly see that:

� the performance of the dense registration approach is superior
to the minutiae-based rigid registration and the initial regis-
tration, especially when there exists severe distortion.

� the dense registration approach registers not only the minutiae
but also the ridges, while the minutiae-based rigid registration
registers only few minutiae, the initial registration registers
some minutiae and some ridges.

� the matching scores between input fingerprints and the mated
reference fingerprints are significantly improved after the dense
registration.

� the image correlation coefficients between input fingerprints
and the mated reference fingerprints in overlapping area are
also significantly improved after the dense registration. Here



Fig. 10. Registration results by three registration approaches for three examples (the first two from FVC2004 DB1_A and the last one from TDF). The blue numbers in () are
(minutiae matching score computed by VeriFinger, image correlation coefficient). We can see that the dense registration produces better registration results, leading to
higher minutiae matching scores and image correlation coefficients of mated fingerprints. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the image correlation coefficient is calculate using the same
method in Eq. (9).

The above experiments were also conducted on NIST SD27, the
most widely used latent fingerprint database. Note that, the latent
fingerprints are first enhanced using the methods in [4]. Three
examples in Fig. 11 demonstrate that the proposed algorithm is
robust to image noise.

In order to directly measure the difference between auto-
matically estimated deformation grid and ground truth, we have
manually registered 120 pairs of fingerprints in TDF as ground
truth. A software tool was developed to assist manual registration.
Using this software, the manual registration process is as follows:

1. Initially matching minutiae found by the matching algorithm
described in 3.1 are shown on the two fingerprint images.

2. A TPS model fitted to these matching minutiae is used to align
the two fingerprints and the registration result (just like the
images in third column of Fig. 12) is shown in another window.

3. The user adds, moves, or deletes matching minutiae or points
iteratively. After each operation of the user, the registration
result is updated.

4. When the user finds that the registration is sufficiently good
(namely, all ridges in the overlapping area become green), the
manually marked matching points are saved and the process
ends.

In most cases, the number of additional point pairs is much
more than the number of initially matched minutiae pairs. A pair
of manually registered fingerprints are shown in Fig. 12. For sci-
entifically and reasonably evaluating the registration algorithm,
the dense grid (10�10 pixels) is used to calculate the registration
error which is measured by the average distance from the ground
truth. Note that, the sampling grid is only valid in fingerprint area.
The registration error distributions are shown in Fig. 13 and the
mean registration error of the minutiae-based rigid registration,
the initial registration, and the dense registration are 23.0, 7.5, and
4.6, respectively. From Fig. 13, we can see the dense registration
outperforms the minutiae-based rigid registration algorithm and
the initial registration algorithm. Fig. 14 gives an example to



Fig. 11. Registration results by three registration approaches for three examples from NIST SD27. The blue numbers in () are (minutiae matching score computed by
VeriFinger, image correlation coefficient). The dense registration improves the minutiae matching scores and image correlation coefficients of mated fingerprints. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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shown the deformation grids estimated by the three different
algorithms.

Caused by complex background pattern, severe distortion, wet
or dry condition etc., there may be some wrong matched minutiae
in the initial registration. Fortunately, benefitting from the pro-
posed region growing global optimization algorithm, some errors
can be removed in dual-resolution block-based registration. Fig. 15
gives an example.

Although most fingerprints can be densely registered, there are
some failure cases. Our analysis of failure cases shows that most of
them are caused by very low image quality which leads to the
badly initial registration results. Such an example is shown in
Fig. 16.

5.2. Matching accuracy

Fingerprint distortion has a negative impact on genuine mat-
ches. This is one of the main reasons for the higher error rates of
participating algorithms on FVC2004 DB1 than other FVC data-
bases. To quantitatively evaluate the contribution of the dense
registration algorithm to fingerprint matching, we conducted
three matching experiments on FVC2004 DB1_A which is the most
widely used fingerprint database for studying fingerprint distor-
tion. There are × =× 100 2, 8008 7

2
genuine matches and

=× 4, 950100 99
2

impostor matches. VeriFinger 6.2 SDK [23] was
used as the fingerprint matcher. The input fingerprint pairs to
VeriFinger are aligned by the three different registration algo-
rithms, respectively. Detection Error Tradeoff (DET) curve is com-
monly used to report fingerprint matching performance. A DET
curve plots the FMR (False Match Rate) against FNMR (False Non-
Match Rate). For the same FMR, the lower FNMR indicates the
higher matching performance. For this experiment, the DET curves
are shown in Fig. 17(a). From Fig. 17(a), we can see that the pro-
posed algorithm performs the best consistently.

Considering that minutiae matchers (like VeriFinger) do not
fully utilize the advantage of the dense registration, we use image
correlator, which outputs the image correlation coefficient, as a
fingerprint matcher and test it on FVC2004 DB1_A. Fingerprint
pairs aligned by the three different registration algorithms are
input to image correlator. The genuine and impostor distributions
of three registration algorithms are shown in Fig. 18. From Fig. 18,



Fig. 12. A pair of manually registered fingerprints used as ground truth for quantitatively measuring registration error. The top row shows the registration result based on the
initial minutiae pairs found by the minutiae matching algorithm described in 3.1. The bottom row shows the final registration result after the locations of some minutiae
(blue boxes) are manually corrected and some additional point pairs (green triangles) are manually added. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 13. Registration error distributions of three algorithms on 120 pairs of fin-
gerprints from TDF database. The registration error is large after the minutiae-base
rigid registration, while it is reduced after the initial registration and significantly
reduced after the dense registration.
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we can see that:

� the genuine image correlation coefficients after the initial re-
gistration are slightly improved, while the impostor image
correlation coefficients do not change,

� the genuine image correlation coefficients after the dense re-
gistration are significantly improved, while the impostor image
correlation coefficients are only slightly improved,
� the genuine image correlation coefficients and the impostor

image correlation coefficients after the dense registration are
separated greatly, while they overlap a lot after the initial re-
gistration, and they are almost totally overlapping after the
minutiae-based rigid registration.

Fig. 17(b) shows the image correlation coefficient DET curves of
three registration algorithms. From Fig. 17(b), we can see that the
dense algorithm obtains the lowest EER (2.25%).

Minutiae matcher and image correlator are mutually com-
plementary. Since the focus of this paper is registration problem
rather than the scoring problem, we use the simple sum rule to
fuse them into a new score. Since the interval of image correlation
coefficient is [�1,1], we use a simple min-max rule to normalize
the image correlation coefficient into range [0,1]. For matching
scores outputted by VeriFinger, we first set the matching score
greater than 100-100, then use the min-max rule to normalize the
matching score. Finally, the fusion score is obtained using the
following formula.

ρ ρ= + ( − ) ( )s s s1 , 11f c m

where sf denotes the final score, sc denotes the normalized image
correlation coefficient, sm denotes the normalized VeriFinger
matching score, ρ is weight coefficient. ρ is empirically set as 0 in
the minutiae-based rigid registration, 0.3 in the initial registration
and 0.65 in the dense registration. The fusion DET curves are re-
ported in Fig. 17(c). From Fig. 17(c), we can see the EER of proposed



Fig. 14. Deformation grids (in red) between two mated fingerprints obtained by three different registration algorithms overlaid on the deformation grid (in black) of ground
truth. For the minutiae-based rigid registration, the initial registration and the dense registration, the average distances from the ground truth (in valid area) are 21.7 pixels,
10.4 pixels and 1.4 pixels, respectively. Note that, the grids are drew with 20�20 pixels for visualization purpose.

Fig. 15. The dense registration algorithm is not sensitive to wrong matched minutiae. A wrong minutiae pair is drawn in red color in the left two images. In the right five
images showing the registration process, the brown box indicates the region where the initial registration error is gradually corrected. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. A failure example of error dense registration due to low quality. The minutiae matching score slightly drops.
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algorithm become more lower (0.89%), demonstrating the efficacy
of the fusion.

We also compare the proposed algorithm with the top
matching algorithms in FVC2004 [15]. The matching performance
is summarized in Table 3. The algorithms are sorted with the as-
cending order of EER. From Table 3, we can see the proposed al-
gorithm obtains the lowest EER, FMR100, FMR1000 and ZeroFMR,
demonstrating the advantage of the proposed algorithm.

To further evaluate the proposed algorithm on distorted fin-
gerprints, we also conducted experiments on TDF, which contains
320 distorted fingerprints and the corresponding 320 normal
fingerprints. For TDF, the 320 pairs of fingerprints are from 185
fingers. Thus, there are 320 genuine matches and
=× 17, 020185 184

2
impostor matches. Eq. (11) is used to calculate

the final score. The fusion DET curves are shown in Fig. 19. After
the dense registration, the EER is significantly reduced to 0.31%,
demonstrating its high performance. The summary of matching
performance is reported in Table 4.

In order to further evaluate the dense registration algorithm,
we conducted a matching experiment on NIST SD27 latent fin-
gerprint database. The Cumulative Match Characteristic (CMC)
curve is commonly used to report latent matching accuracy. To
make the experiment more realistic, we use all 27,000 file fin-
gerprints in the NIST SD14 database as the background database.



Fig. 17. DET curves of three matching score computation methods on FVC2004
DB1_A combining with three registration algorithms. The three matching score
computation methods are (a) Verifinger, (b) image correlator and (c) score level
fusion between (a) and (b).

Fig. 18. Image correlation coefficient distributions of genuine and impostor by
three registration algorithms on FVC2004 DB1_A. The genuine and impostor dis-
tributions are well separated by the dense registration.

Table 3
Matching performances (sorted according to EER) of proposed method and top
fingerprint matchers on FVC2004 DB1_A [15].

Algorithm EER FMR100 FMR1000 ZeroFMR

Proposed 0.89% 0.82% 1.96% 3.36%
P047 1.97% 2.86% 4.36% 8.21%
P101 2.72% 3.86% 9.25% 13.43%
Initial registration 3.11% 3.57% 4.50% 6.07%
P097 3.38% 5.54% 9.75% 12.93%
P009 3.62% 5.54% 11.68% 15.39%
P049 3.91% 7.11% 12.43% 17.96%
Minutiae-based rigid registration 4.55% 6.86% 7.68% 11.86%

Fig. 19. Fusion DET curves on TDF using the three different registration algorithms.

Table 4
Matching performance on TDF using different algorithms.

Algorithm EER FMR100 FMR1000 ZeroFMR

Proposed 0.31% 0.00% 0.31% 0.31%
Initial registration 0.63% 0.63% 0.63% 1.25%
Minutiae-based rigid registration 1.88% 2.19% 5.00% 8.44%
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Since it is very time consuming to run the registration algorithms
for the whole background database, we use VeriFinger to find the
top 200 candidates for each latent which is first enhanced using
method in [4]. Then three registration algorithms are used to align
each latent fingerprint to corresponding top 200 gallery finger-
prints and matching scores between aligned fingerprints are
computed using Eq. (11). From the CMC curves shown in Fig. 20,
we can see that the proposed algorithm achieves the highest rank-
1 rate.



Fig. 20. The CMC curves on NIST SD27 latent fingerprint database using the three
different registration algorithms. Registration is performed for top 200 candidates
of each latent fingerprint.

Table 5
Speed of the proposed dense registration algorithm.

Algorithm Time (s)

FVC2004 DB1 TDF NIST SD27

Minutiae-based initial registration 0.31 0.45 0.42
Orientation&period-based initial
registration

1.09 1.39 1.41

Low resolution block-based registration 1.21 1.62 1.43
High resolution block-based registration 1.64 2.31 1.82
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5.3. Efficiency

The average times of the proposed dense registration algorithm
on a PC with 2.0 GHz CPU are reported in Table 5. Initial regis-
tration is implemented in MATLAB and dual-resolution block-
based registration is implemented in C. The total computational
time of proposed dense registration algorithm is about 3, 4, 3 s for
one fingerprint pair in FVC 2004 DB1, TDF and NIST SD27, re-
spectively. Fingerprints in TDF need longer time due to their larger
valid fingerprint area.
6. Conclusion

Elastic deformation of fingerprints poses a big challenge for
dense registration of fingerprints, which is beneficial to various
fingerprint matching methods. Most existing fingerprint matching
algorithms can output only matched minutiae and hence cannot
register severely distorted fingerprints.

In this paper, we proposed a novel dense fingerprint registra-
tion algorithm, which consists of an initial registration step and a
dual-resolution block-based registration step. The dual-resolution
block-based registration is approached in an energy minimization
framework which consists of local search, energy function con-
struction and global optimization. The dense registration algo-
rithm is insensitive to wrong initially matched minutiae. Experi-
mental results on FVC2004 DB1, TDF and NIST SD27 latent fin-
gerprint database, whose images are markedly affected by elastic
distortion, show that the proposed algorithm not only produces
more accurate registration results but also improves the matching
performance by fusion of minutiae matching and image
correlation.
Future directions include increasing the speed of the proposed

algorithm and improving the accuracy for latent fingerprints. And
we will also extend the proposed algorithm to other applications,
such as seamless fingerprint mosaicking [19,30].
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